If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40=4x^2
We move all terms to the left:
40-(4x^2)=0
a = -4; b = 0; c = +40;
Δ = b2-4ac
Δ = 02-4·(-4)·40
Δ = 640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{640}=\sqrt{64*10}=\sqrt{64}*\sqrt{10}=8\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{10}}{2*-4}=\frac{0-8\sqrt{10}}{-8} =-\frac{8\sqrt{10}}{-8} =-\frac{\sqrt{10}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{10}}{2*-4}=\frac{0+8\sqrt{10}}{-8} =\frac{8\sqrt{10}}{-8} =\frac{\sqrt{10}}{-1} $
| 2x=11=5x=3x-7=180 | | x-41+104=180 | | 4×2x-3=2x+15 | | 5-3(x+17)=x+12 | | x+41-104=180 | | x+41+104=180 | | 9-q=15 | | 9-q=16 | | 3/5a=4/15 | | 14+6n=4n | | -5(1+5x)+2(4x-8=47 | | 2x+14=x+12 | | 15/14x=0 | | 9{9-(-3x-1)}=216x+153 | | 14/15x=0 | | y+2.7=22.7 | | 5y^2+135=0 | | 26=y-6 | | 16k=-15k-4 | | 7x/3+2x/4=17/3 | | 3x+2(-x+51)=122 | | -2x(3+5x)=14 | | x^2+(x+50)^2=200^2 | | 9+v=2v-12+6v | | 0.06(x-15)=0.06x-9 | | 8b-14=6b+6 | | 2-m=2 | | 15y-17+13y=20y+15 | | c+9=2c+1 | | 11x+8=3x+8 | | -12n=-11-13n | | .10=(.16-1.5x)+.5x |